Chapter 7 Useful Math Facts

7.1 Exponents and Logarithms

for positive constants \(a\) and \(b\):

\(a^0 = 1\)

\(a^{-n}=\frac{1}{a^n}\) for positive integer \(n\)

\(a^{x+y}=a^x a^y\)

\(a^{x-y}=\frac{a^x}{a^y}\)

\((a^x)^y=a^{xy}\)

\((ab)^x=a^xb^x\)

\(\log_a(x) = y\) implies \(a^{y} = x\)

If you’re working in statistics it’s usually a safe bet that \(\log(x)\) means \(\log_e(x)\) not \(\log_{10}(x)\).

\(\log(1) = 0\)

\(\log(e) = 1\)

\(\log(xy)=\log(x) + \log(y)\)

\(\log(x/y)=\log(x)-\log(y)\)

7.2 Sequences and Series

7.2.1 Monotonicity

A sequence of numbers \(\{x_1,x_2,\ldots\}\) is monotone increasing if \(x_n \le x_{n+1}\) for all \(n\). If \(x_n \ge x_{n+1}\) for all \(n\), the sequence is monotone decreasing

7.2.2 Geometric series

\(\sum\limits_{k=0}^{n} a^k =\frac{1- a^{n+1}}{1-a}\)

for \(|a|<1\) \(\sum\limits_{k=0}^{\infty} a^k =\frac{1}{1-a}\)

7.2.3 Taylor series

\(e^x=\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}\)

7.2.4 Binomial Theorem

\((x+y)^n = \sum\limits_{k=0}^{n}\binom{n}{k}x^{k}y^{n-k}\)

7.3 Calculus - Derivatives

\(f(x)=c \;(\text{constant}) \qquad f'(x)=0\)

\(f(x) = x^{r},\, r \in \mathbb{R} \qquad f'(x) = rx^{r-1}\) (Power Rule)

\(f(x) = e^x \qquad f'(x) = e^x\)

\(f(x)=\log(x) \qquad f'(x) =\frac{1}{x}\)

\(f(x)=g(x)\pm h(x) \qquad f'(x)=g'(x) \pm h'(x)\)

\(f(x)=g(x)h(x) \qquad f'(x)= g(x)h'(x)+g'(x)h(x)\) (Product Rule)

\(f(x) =\frac{g(x)}{h(x)} \qquad f'(x)=\frac{g'(x)h(x)-g(x)h'(x)}{[h(x)]^{2}}\,\) (Quotient Rule)

\(f(x)=g \circ h(x) = g(h(x)) \qquad f'(x) = g'(h(x))h'(x)\) (Chain Rule)

7.3.1 Maxima and Minima

\(f(x)\) has a minimum at \(c\) if \(f'(c)=0\) and \(f''(c)>0\)

\(f(x)\) has a maximum at \(c\) if \(f'(c)=0\) and \(f''(c)<0\)

7.4 Calculus - Integrals

\(f(x) = c \qquad \int f(x)\,dx = cx\)

\(f(x) = x^r \qquad \int f(x)\,dx = \frac{x^{r+1}}{r+1},\,r \ne -1\)

\(f(x) = \frac{1}{x} \qquad \int f(x)\,dx = \log(x)\)

\(f(x) = e^x \qquad \int f(x)\,dx = e^x\)

\(f(x) = cg(x) \qquad \int f(x)\,dx = c \int g(x)\, dx\)

\(f(x) = g(x)\pm h(x) \qquad \int f(x)\,dx = \int g(x)\, dx \pm \int h(x)\, dx\)

7.4.1 Integration by Parts

\(\int_{a}^{b} f(x)g'(x)\, dx = f(x) g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x)\, dx\)

Equivalently, let \(u=f(x)\) and \(dv= g'(x)\, dx\) then \(\int u\, dv = uv -\int v du\)

7.5 Miscellaneous

7.5.1 Gamma function

The Gamma function is defined as \(\Gamma(\alpha) =\int\limits_{0}^{\infty}x^{\alpha-1}e^{-x}\, dx\) for \(\alpha > 0\)

\(\Gamma(1)=1\)

\(\Gamma(\alpha)=(\alpha-1)\Gamma(\alpha-1)\)

\(\alpha\Gamma(\alpha)=\Gamma(\alpha+1)\)

\(\Gamma(n)=(n-1)!\) for integer \(n>0\)

7.5.2 Beta Function

The Beta function is defined as \(B(\alpha, \beta)=\int_{0}^{1}x^{\alpha-1}(1-x)^{\beta-1}\,dx\) for \(\alpha, \beta > 0\)

\(B(\alpha, \beta) = B(\beta, \alpha)\)

\(B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}\)